미니배치학습(2)
-
[밑바닥딥러닝] 8. 2층 신경망 구현, 미니배치 학습
본 게시글은 한빛미디어 『밑바닥부터 시작하는 딥러닝, 사이토 고키, 2020』의 내용을 참조하였음을 밝힙니다. 이번 장에서는 지금까지 살펴본 신경망의 출력, 손실 함수, 그레디언트, 가중치 업데이트, 미니 배치 학습을 모두 이용하여 2층 신경망을 구현하고, 실제로 신경망을 학습시켜보도록 하겠다. 2층 신경망 구현 class TwoLayerNet: def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01): ### 가중치들을 초기화 def predict(self, x): ### 입력값 x와 가중치들을 바탕으로 출력값을 반환 def loss(self, x, t): ### 입력값 x를 통해 예측값을 계산하고 ### 타깃값 t..
2021.10.01 -
[밑바닥딥러닝] 5. 신경망 학습 - 손실 함수, 미니 배치 학습
본 게시글은 한빛미디어 『밑바닥부터 시작하는 딥러닝, 사이토 고키, 2020』의 내용을 참조하였음을 밝힙니다. 기계학습에서 '학습'이란 훈련 데이터(입력, 타깃)를 통해 가중치 매개변수의 값을 가장 최적의 방향으로 조정하는 과정을 말한다. 이번 장에서는 신경망에서 학습이 이루어지는 원리를 실습을 통해 알아보도록 하자. 훈련 데이터 기계학습에서는 예측 모델을 학습시키기 위해서 훈련 데이터(training data)를 사용한다. 훈련 데이터란 오로지 학습을 위해서 전체 데이터에서 일부분의 데이터를 따로 떼어놓은 데이터들이다. (이후에 훈련 데이터도 하이퍼 파라미터의 조정을 위해서 또 나눠지긴 하지만 일단은 위의 수준까지만 알아두자.) 훈련 데이터로 훈련시킨 예측 모델은 시험 데이터(test data)를 통해..
2021.09.30