[밑바닥딥러닝] 14. 과대적합(Overfitting) 대응 - 규제, 드롭아웃
본 게시글은 한빛미디어 『밑바닥부터 시작하는 딥러닝, 사이토 고키, 2020』의 내용을 참조하였음을 밝힙니다. 과대적합(Overfitting)은 모델의 표현력이 복잡해지거나, 훈련 데이터 수가 적을 때 주로 발생한다. 모델이 과대적합되면 훈련 데이터에 대해서만 정확해지기 때문에 범용적인 모델을 만들 수 없어진다. 이번 장에서는 과대적합을 막기 위한 L1, L2 규제와 드롭아웃(dropout)이라는 방법에 대해서 알아보도록 하자. l1, l2 규제 출처 : https://medium.com/analytics-vidhya/l1-vs-l2-regularization-which-is-better-d01068e6658c L1 규제는 기존 손실값에 (람다(λ)값이 곱해진) 가중치의 절대값을 더한다. 가중치 중에 큰..
2021.10.16