[밑바닥딥러닝] 13. 모델 가중치의 초기화
본 게시글은 한빛미디어 『밑바닥부터 시작하는 딥러닝, 사이토 고키, 2020』의 내용을 참조하였음을 밝힙니다. 좋은 모델을 만들기 위해서는 모델 가중치를 처음에 적절히 설정하는 것이 중요하다. 가중치를 처음 초기화할 때 고르게 분포시키지 않고, 한쪽에 치우치게 하면 어떻게 될까? 위는 활성화 함수로 시그모이드 함수를 가진 모델의 가중치 초기화에 표준편차를 1로 설정했을 때 각 층에 나타난 저장된 활성화 값들을 나타낸다. 시그모이드 함수에 의해 0이나 1에 값이 쏠려있는데 학습 시 역전파의 기울기 값이 점점 작아지다 사라지는 기울기 소실 현상이 발생할 수 있다. 표준편차를 0.01로 작게 설정하면 위와 같이 된다. 대부분의 값이 0.5로 편중되어 있는데, 이 역시 모델의 표현력 관점에서 부정적인 현상이다...
2021.10.16